Archaeological Remote Sensing in North America

INNOVATIVE TECHNIQUES FOR ANTHROPOLOGICAL APPLICATIONS

Edited by Duncan P. McKinnon and Bryan S. Haley
Contents

List of Illustrations ix
Foreword Jay K. Johnson xiii
Preface
Duncan P. McKinnon and Bryan S. Haley xvii
Acknowledgments xxii
New Developments in Archaeological Remote Sensing:
An Introduction
Duncan P. McKinnon and Bryan S. Haley 1

Part I Site Structure and Community Organization

1. Multisensor Remote Sensing at Spiro:
Discovering Intrasite Organization
Scott W. Hammerstedt, Jami J. Lockhart, Patrick C. Livingood,
Tim Mutvibill, Amanda L. Regnier, George Sabo III,
and John R. Samuelsen 11

2. Investigating Mississippian Community Organization
with Geophysics: Two Examples from the Tennessee River Valley
Shawn M. Patch, Sarah Lowry, and Erin Pritchard 28

3. Evaluating the Use of Community Space at
Two Southeastern Mound Centers Using Magnetic Gradient
and Surface Collection Data
Duncan P. McKinnon and Bryan S. Haley 46

4. At the Tip of an Amplitude Wave: The Role of Terrestrial Remote
Sensing in Twenty-First Century Grand Canyon Archaeology Debates
Philip B. Mink II 65
PART 2 TECHNOLOGICAL TRANSFORMATION AND ECONOMIC CHANGE

5. A Remote Sensing Approach to Studying Land Use Change in Chaco Canyon, New Mexico
 Jennie O. Sturm 83

6. Examining Agricultural Surplus at Huff Village, North Dakota: Combining Archaeological and Remote Sensing Data
 Adam S. Wiewel 95

7. Transformation in Technologies: A Look at Basketmaker III Archaeology in Southwestern Colorado
 Shanna Diederich, Margaret Watters, Duncan P. McKinnon, and Bryan S. Haley 113

PART 3 ARCHAEOLOGICAL LANDSCAPES

8. Conceptualizing the Anthropogenic Islands of Southern Florida with LiDAR
 Victor D. Thompson 127

9. Magnetic Susceptibility for Historical Archaeological Sites and Landscapes
 Daniel P. Lynch and Rory Becker 141

10. Anthropologically Focused Geophysical Surveys and Public Archaeology: Engaging Present-Day Agents in Placemaking
 Edward R. Henry, Philip B. Mink II, and W. Stephen McBride 153

PART 4 EARTHEN MOUND CONSTRUCTION AND COMPOSITION

11. The Role of Geophysics in Evaluating Structural Variation in Middle Woodland Mounds in the Lower Illinois River Valley
 Jason L. King, Duncan P. McKinnon, Jason T. Herrmann, Jane E. Buikstra, and Taylor H. Thornton 171

 Daniel P. Bigman and Daniel M. Seinfeld 185

13. Exploring the Deepest Reaches of Arkansas’s Tallest Mounds with Electrical Resistivity Tomography
 James Zimmer-Dauphinee 198
Part 5 Commentary

 Kenneth L. Kvamme 215

References 231
Contributors 267
Index 275
Illustrations

Figure 1.1. Distribution of sites and regions discussed in the text 5

Figure 1.2. Temporal association of sites and regions discussed
 in the text 7

Figure 1.1. The Spiro sequence 12

Figure 1.2. Map of Spiro showing the locations of mounds and excavated
 lower terrace buildings 13

Figure 1.3. Gradiometer results 17

Figure 1.4. Portion of the upper terrace showing historical debris and areas
 of enhanced magnetic strength on small topographic rises 18

Figure 1.5. Lower terrace showing numerous structure-sized
 magnetic anomalies 20

Figure 1.6. Comparison of different technologies depicting the
 same anomalies 22

Figure 1.7. Anomalies near Ward Mounds 23

Figure 1.8. Gradiometry and resistivity for Houses 20 to 23 25

Figure 2.1. Gradiometer data mosaic of the Cox site 34

Figure 2.2. Interpretation of archaeological features at the Cox site 35

Figure 2.3. Gradiometer data mosaic of the Bell site 36

Figure 2.4. GPR slice map from 30 to 60 cmbs at the Bell site 37

Figure 2.5. Interpretation of archaeological features at the Bell site 38

Figure 3.1. Map showing surface collection areas at Battle Mound
 and frequency of artifacts in each area 49
Figure 3.2. Results of magnetic gradiometry survey at Battle Mound and interpretation of results 52

Figure 3.3. Examples of circular anomalies in Area J and Area D 53

Figure 3.4. Map of mound locations at the Hollywood site and relative frequencies of Assemblage 1 to Assemblage 2 surface collection data 56

Figure 3.5. Results of magnetic gradiometry survey at Hollywood and interpretation of results 59

Figure 3.6. Select magnetic gradiometer results and interpretations highlighting circular and rectangular anomalies 60

Figure 4.1. Approximate locations for sites discussed in this chapter 67

Figure 4.2. Results of ground-penetrating radar survey at C:13:0778 (UN-52) 70

Figure 4.3. Results of magnetic gradiometer survey at C:13:0778 (UN-52) 72

Figure 4.4. Results of magnetic gradiometer survey at MU 3617 74

Figure 4.5. Results of ground-penetrating radar survey at C:13:0099, magnetic gradiometer survey at C:13:0099, and ground-penetrating radar survey at B:16:105 77

Figure 5.1. Chetro Ketl field, Chaco Canyon, New Mexico 84

Figure 5.2. Close-up of the Chetro Ketl field 87

Figure 5.3. Three amplitude slice maps from three distinct grids in the southern part of the field 90

Figure 5.4. Chetro Ketl field showing linear features, GPR survey grids, and a number of small circular features that were mapped with GPR 91

Figure 5.5. Chetro Ketl field showing the hypothesized relative chronological history of this area 91

Figure 6.1. Magnetic gradiometry results at Huff Village 100

Figure 6.2. Topographic surface of Huff Village 101

Figure 6.3. Close-up views of houses showing their perimeters and interior features in sky view factor elevation data and low-pass filtered magnetic data 103

Figure 6.4. Close-up views of houses showing the magnetic gradiometry data, low-pass filtered magnetic data, sky view factor elevation data, 3 nT threshold layer, 5 nT threshold layer, and digitized features 104
Figure 11.2. Detail of electrical resistance profile of Mound House Mound 1 178
Figure 11.3. Electrical resistance profile of Golden Eagle Mound 1 179
Figure 11.4. Time slices from ground-penetrating radar survey of Golden Eagle Mound 2 180
Figure 11.5. Geomagnetic results from the Kamp Mound Group 182
Figure 12.1. Contour map of Letchworth Mounds showing locations of GPR transects 186
Figure 12.2. Two-dimensional profile collected on Mound 2 189
Figure 12.3. Two-dimensional profile collected on Mound 3 190
Figure 12.4. Stratigraphic map of Unit 1 in Mound 3 191
Figure 12.5. Two-dimensional profile collected on Mound 4 192
Figure 12.6. Two-dimensional profile collected on Mound 5 193
Figure 12.7. Two-dimensional profile collected on Mound 6 195
Figure 13.1. High-resolution elevation data confirming the rectangular shape of Mound B 200
Figure 13.2. Profile recorded off the east side of Mound B 207
Figure 13.3. Profile recorded across the top of Mound B 207
Figure 13.4. Resistivity distribution of the surface of Mound B 209
Figure 13.5. Profile taken from the northern edge of Mound A 210
The latest on the rapidly growing use of innovative archaeological remote sensing for anthropological applications in North America

Upgrading the highly praised 2006 publication Remote Sensing in Archaeology, edited by Jay K. Johnson, Archaeological Remote Sensing in North America: Innovative Techniques for Anthropological Applications is a must-have volume for today's archaeologist. Targeted to practitioners of archaeological remote sensing as well as students, this suite of current and exemplary applications adheres to high standards for methodology, processing, presentation, and interpretation.

The use of remote sensing technologies to address academic and applied archaeological and anthropological research problems is growing at a tremendous rate in North America. Fueling this growth are new research paradigms using innovative instrumentation technologies and broader-area data collection methods. Increasingly, investigators pursuing these new approaches are integrating remote sensing data collection with theory-based interpretations to address anthropological questions within larger research programs.

"An important collection that illustrates the diversity of techniques used to collect geophysical data and their use in archaeological interpretation. The inclusion of chapters that cover several regions and historic as well as prehistoric sites adds further value."

—Gene Clay, principal investigator and geophysical specialist at Cultural Resource Analysis, Inc.

"Includes current, well-written, and interesting material that provides a significant contribution to the field. The use of remote sensing technology with traditional methods is current with the state of research. The chapters are well grounded in archaeological and anthropological theory. The methods outlined in the book also start to set a standard or baseline that can be implemented by others."

—Roy Since, associate professor, Department of Geography, University of North Carolina at Greensboro

Duncan P. McKinnon is an assistant professor of anthropology at the University of Central Arkansas and a research associate at the Center for American Archeology. He has published in American Antiquity, Southeastern Archeology, Arkansas Archeologist, Midcontinental Journal of Archaeology, and Caddo Journal.

Bryan S. Haley is an archaeologist and terrestrial/marine remote sensing specialist in the New Orleans Office of Coastal Environments, Inc. He specializes in prehistoric and historic Native archaeology in the southeastern United States. His sixteen years of remote sensing experience include work on projects in twenty-three American states, Central America, South America, and Europe.

The University of Alabama Press
WWW.UAPRESS.UA.EDU
Archaeological Remote Sensing in North America: Innovative Techniques for Anthropological Applications

Reviewed by Robert G. McCullough, Illinois State Archaeological Survey, Prairie Research Institute, University of Champaign at Urbana–Champaign

In a first look at this volume, my impression was: “how can this collection of studies profess to be a comprehensive geophysical text for North America without the usual cast of characters?” I was referring to various authors in the publication Remote Sensing in Archaeology: An Explicitly North American Perspective, edited by Johnson in 2006. That volume pulled together a diverse set of geophysical work from often hard-to-find manuscripts and became a handbook for the methodology of conducting geophysical surveys and data processing, as well as a reference that explained how these instruments work.

In contrast, Archaeological Remote Sensing in North America: Innovative Techniques for Anthropological Applications is focused on how remote sensing can address important anthropological questions. This volume is intended to be essentially a sequel to the methods volume. Although Johnson writes an interesting reflexive “Forward,” and Kvamme presents a commentary for the last chapter, a newer generation of geophysical specialists dominates this volume.

The goal of Archaeological Remote Sensing in North America is to move beyond creating maps of subsurface anomalies to guide future excavations. The focus of this volume is to integrate geophysical results with theory-driven anthropology. The increasing availability of geophysical equipment has encouraged a wider range of research questions that, as many of the studies here demonstrate, can only be addressed through geophysical survey. These chapters integrate cultural contexts and other types of archaeological data with feature distribution maps, allowing for broader interpretations than are possible with geophysics alone.

Archaeological Remote Sensing in North America is organized by four anthropological themes, unlike the 2006 volume that was organized by geophysical methods. This organization makes sense, not only because of the theory-driven theme of this volume, but also because multiple instruments were often necessary to address specific questions related to subsurface contexts. As in any edited collection, not all the chapters are equally successful in forwarding the volume’s goals, but I agree with Kvamme’s commentary chapter (Chapter 14, pp. 217–218) that studies that utilize magnetic susceptibility data (Chapter 1, but especially Chapters 9 and 10) represent “another of this volume’s highlights and represent a major sea change in contemporary practice.”

In the first section, focused on “Site Structure and Community Organization,” three of the four chapters presented the results of wide-area magnetometer (mag) surveys of mound...
and village/town complexes. These produced spectacular results and indeed revealed
details on dynamic community organization that could only be obtained through
geophysics. The mag data, however, were supplemented by other geophysical tech-
niques and/or archival information, surface collections, and previous excavation data.
Hammerstedt et al. (Chapter 1) made good use of the complementary techniques of
magnetic susceptibility and soil resistivity for anomaly confirmation at Spiro. They
were able to show differential usage of landforms, as well as over sixty, large circular
structures in an area previously thought to have been unoccupied. Patch et al. (Chapter
2) examined two Mississippian towns in the Tennessee River Valley, revealing the set-
tlement complexity at both sites and convincingly demonstrating a contraction of the
town at Cox and sequential settlements at the Bell site. McKinnon and Haley (Chapter
3) looked at a Caddo mound and a Mississippian town (Hollywood Mounds), using
surface collections and previous studies to good effect, although this reader found their
use of the ethnohistorical literature a bit *ex post facto*.

Three chapters were placed under the “Technological Transformation and Eco-
nomic Change” theme. Strum (Chapter 5) presented a well-planned, straightforward
survey of Cherto Ketl Field in Chaco Canyon that combined the use of time-series
aerial photographs with subcentimeter GPS, GIS, and ground-penetrating radar
(GPR), along with clear explanations of the techniques. The GPR survey was suc-
cessful in identifying earlier construction intervals, a shift in orientation of lines, and
different types of features in association. Wiewel’s work (Chapter 6) at tightly nucleated
Huff Village in North Dakota also produced excellent results by combining site-wide
mag, a high resolution digital elevation model (DEM) with trend surface correction,
previous excavation data, and coring. By integrating these methods, Wiewel was able
to confidently estimate the size and distribution of the structures, as well as the size
and placement of many of the pit features and hearths, which in turn allowed him to
estimate population size, longevity, and agricultural production as a baseline for com-
paring sites and examining temporal trends.

The “Archaeological Landscapes” theme included a LiDAR study by Thomson
(Chapter 8) for the huge shell islands in southwest Florida covered in dense mangrove
trees with fluctuating tides that limit terrestrial geophysical surveys. The other two
studies focused on historic sites to test the validity of magnetic susceptibility in combi-
nation with other methods. Lynch and Becker (Chapter 9) make a major contribution
by employing magnetic susceptibility, an underutilized technique, as well as soil resis-
tivity and mag to a fort in Wyoming, a lighthouse in Michigan, and a tar kiln in North
Carolina, clearly demonstrating the applicability of these techniques for research and
contextual evaluation in a variety of historic settings. Henry et al.’s (Chapter 10) exam-
ination of Civil War battlements in Kentucky takes a different interpretive approach.
Using a public archaeology perspective, they examine how contemporary resident
populations identify with historic places (place-making) and how geophysics can excite
and inform this endeavor.

The final theme, “Earthen Mound Construction and Composition,” contains three
chapters that examine the internal structures of mounds, illustrating noninvasive
approaches to investigating these often endangered and culturally sensitive resources. Bigman and Seinfeld (Chapter 12) examined GPR radargrams from five low, sandy mounds at the Middle to Late Woodland Letchworth Mounds in Tallahassee, Florida, determining that four out of the five were constructed in a single episode. Zimmer-Dauphinee (Chapter 13) used electrical resistivity tomography (ERT) to investigate the interior of the two largest mounds (one flat-top and one conical) at the Toltec site in Arkansas. ERT is not widely understood by most American archaeologists, and credit goes to the author for his short explanation of how this technique works and the methodology employed. This study found that both mounds were originally constructed in their current shapes, but had been enlarged while maintaining the same morphology. An evaluation of structural variation in Middle Woodland mounds in the Lower Illinois River Valley by King et al. (Chapter 11) employed ERT, GPR, and mag to test for attributes of the standard model, which includes the preparation of surfaces, a varied ramp complex, a central tomb, and a final capping layer. Two of the mound groups observed by the investigators gave especially good results in detecting internal mound structure that supported the standard model. As with many of the other studies, these techniques also were useful in evaluating the degree of preservation after decades of plowing and erosion.

Archaeologists have known for some time now that remote sensing has become a game changer for the preservation and interpretation of archaeological resources. The application of these techniques has provided information that would be impractical to collect with traditional methods. All the authors set up nice backgrounds to their investigations, and the results are applicable for resource evaluation and future preservation. Overall, this volume is an innovative work that demonstrates entirely new avenues for anthropological questions and presents case studies on how these techniques can be integrated with traditional archaeological data for more dynamic interpretations. I’m certainly more knowledgeable for reading it.

With that said, many of the chapters in this volume assume a certain level of knowledge in geophysics and may be difficult for someone expecting a how-to manual. For instance, the articles are uneven in terms of giving basic collection methodology and processing information. Some assume that standard collection intervals and processing are being used. Even though the explicit intent of this volume is the presentation of results within an anthropological framework, some basic survey and processing information would be helpful for evaluating a particular investigation or for applying it in the future. In addition, some of the anomalies discussed in text are difficult to see in the figures. In my view, with the development of new techniques, we need to see an evolution in publishing studies employing geophysical data. A larger format book and/or electronic companion files would have enhanced this volume.